Fractional-View Analysis of Fokker-Planck Equations by ZZ Transform with Mittag-Leffler Kernel

نویسندگان

چکیده

This work combines a ZZ transformation with the Adomian decomposition method to solve fractional-order Fokker-Planck equations. The fractional derivative is represented in Atangana-Baleanu derivative. It looked at graphs that show accurate and estimated results are close each other, indicating works. Fractional-order solutions most line dynamics of targeted problems, they provide an endless number options for optimal mathematical model solution particular physical phenomenon. analytical approach produces series type result quickly converges actual answers. acquired outcomes suggest novel simple use very successful assessing complicated equations occur related research engineering fields.

برای دانلود باید عضویت طلایی داشته باشید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Cascade of Fractional Differential Equations and Generalized Mittag-Leffler Stability

This paper address a new vision for the generalized Mittag-Leffler stability of the fractional differential equations. We mainly focus on a new method, consisting of decomposing a given fractional differential equation into a cascade of many sub-fractional differential equations. And we propose a procedure for analyzing the generalized Mittag-Leffler stability for the given fractional different...

متن کامل

Fractional differential equations for the generalized Mittag-Leffler function

*Correspondence: [email protected] 3Department of Mathematical Sciences, UAE University, Al Ain, United Arab Emirates Full list of author information is available at the end of the article Abstract In this paper, we establish some (presumably new) differential equation formulas for the extended Mittag-Leffler-type function by using the Saigo-Maeda fractional differential operators involvin...

متن کامل

Discrete Mittag-Leffler Functions in Linear Fractional Difference Equations

and Applied Analysis 3 and define recursively a∇−nf t ∫ t a a∇−n 1f τ ∇τ 2.4 for n 2, 3, . . .. Then we have the following. Proposition 2.1 Nabla Cauchy formula . Let n ∈ Z , a, b ∈ T and let f : T → R be ∇-integrable on a, b ∩ T. If t ∈ T, a ≤ t ≤ b, then a∇−nf t ∫ t a ̂ hn−1 ( t, ρ τ ) f τ ∇τ . 2.5 Proof. This assertion can be proved by induction. If n 1, then 2.5 obviously holds. Let n ≥ 2 an...

متن کامل

A Lyapunov type inequality for fractional operators with nonsingular Mittag-Leffler kernel

In this article, we extend fractional operators with nonsingular Mittag-Leffler kernels, a study initiated recently by Atangana and Baleanu, from order [Formula: see text] to higher arbitrary order and we formulate their correspondent integral operators. We prove existence and uniqueness theorems for the Caputo ([Formula: see text]) and Riemann ([Formula: see text]) type initial value problems ...

متن کامل

The mean value theorem and Taylor’s theorem for fractional derivatives with Mittag–Leffler kernel

*Correspondence: [email protected] 1Department of Applied Mathematics and Theoretical Physics, University of Cambridge, Cambridge, UK Full list of author information is available at the end of the article Abstract We establish analogues of the mean value theorem and Taylor’s theorem for fractional differential operators defined using a Mittag–Leffler kernel. We formulate a new model for the fract...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Symmetry

سال: 2022

ISSN: ['0865-4824', '2226-1877']

DOI: https://doi.org/10.3390/sym14081513